Towards Training-Free Refinement for Semantic Indexing of Visual Media

نویسندگان

  • Peng Wang
  • Lifeng Sun
  • Shiqiang Yang
  • Alan F. Smeaton
چکیده

Indexing of visual media based on content analysis has now moved beyond using individual concept detectors and there is now a focus on combining concepts or post-processing the outputs of individual concept detection. Due to the limitations and availability of training corpora which are usually sparsely and imprecisely labeled, training-based refinement methods for semantic indexing of visual media suffer in correctly capturing relationships between concepts, including co-occurrence and ontological relationships. In contrast to training-dependent methods which dominate this field, this paper presents a training-free refinement (TFR) algorithm for enhancing semantic indexing of visual media based purely on concept detection results, making the refinement of initial concept detections based on semantic enhancement, practical and flexible. This is achieved using global and temporal neighbourhood information inferred from the original concept detections in terms of weighted nonnegative matrix factorization and neighbourhood-based graph propagation, respectively. Any available ontological concept relationships can also be integrated into this model as an additional source of external a priori knowledge. Experiments on two datasets demonstrate the efficacy of the proposed TFR solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روشی برای بازخورد ربط براساس بهبود تابع شباهت در بازیابی تصویر بر اساس محتوا

In content based image retrieval systems, the suitable visual features are extracted from images and stored in the feature database Then the feature database are searched to find the most similar images to the query image. In this paper, three types of visual features by 270 components were used for image indexing. Here, we use a weighted distance for similarity measurement between two images....

متن کامل

High order pLSA for indexing tagged images

This work presents a method for the efficient indexing of tagged images. Tagged images are a common resource of social networks and occupy a large portion of the social media stream. Their basic characteristic is the co-existence of two heterogeneous information modalities i.e. visual and tag, which refer to the same abstract meaning. This multi-modal nature of tagged images makes their efficie...

متن کامل

Semantic Indexing and Multimedia Event Detection: ECNU at TRECVID 2012

1 Abstract This year we participated in two tasks: Semantic Indexing (SIN) and Multimedia Event Detection (MED). In this paper, we present our approaches and discuss the evaluation results. Semantic Indexing (SIN): For video semantic indexing, we focus on the performance improvement by using a Weighted Hamming Embedding kernel compared with traditional BoW approaches. Below are the brief descri...

متن کامل

Analysis of User query refinement behavior based on semantic features: user log analysis of Ganj database (IranDoc)

Background and Aim: Information systems cannot be well designed or developed without a clear understanding of needs of users, manner of their information seeking and evaluating. This research has been designed to analyze the Ganj (Iranian research institute of science and technology database) users’ query refinement behaviors via log analysis.    Methods: The method of this research is log anal...

متن کامل

Semantically Smoothed Refinement for Everyday Concept Indexing

Instead of occurring independently, semantic concepts pairs tend to co-occur within a single image and it is intuitive that concept detection accuracy for visual concepts can be enhanced if concept correlation can be leveraged in some way. In everyday concept detection for visual lifelogging using wearable cameras to automatically record everyday activities, the captured images usually have a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016